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Palladium-catalyzed allylic alkylation is undoubtedly one of the Table 1. Palladium-Catalyzed Cycloaddition of 1a with Methyl

most extensively investigated reactions under transition-metal Actylate (2a): Ligand Effepc(:c G
Pn~-CsHs,

catalysist The key elemental step of this process is a nucleophilic o (5 mol %) CO,Me CO,Me
attack to ar-allylpalladium intermediate at one of the two terminal :Q:o , ~CO2Me ligand (10 mol %)
carbons of the allylic moiety (Figure 1, left). In contrast, although CHxCl, / 1
o y _y( g ) ¢ Ph COMe 40°C, 24h P ‘COMe PH CO,Me
it is known that a nucleophile can also attack the central carbon to 18.(1.8 equiv) 2a Baa ana
form a cyclopropane ring in the context of stoichiometric reactions i

i i i i i % yield of % yield of
(Flgu_re 1, right)? catalytic cyclopropanation through this mode of eny igand 300 (01" s (00
reaction pathway has been scarcely explored. In fact, only a few

. . : PPh 29 (83/17) 64 (75/25)
reports have succeeded in the selective formation of cyclopropanes 5 binap 14 (81/19) 55 (78/22)
in a catalytic mannet:® In this Communication, we describe the zc g?ng , 12((8(:}.)/19) 9737(&75%%?)
- 5 . e .

development of an efficient synthesis of spiro[2.4]heptanes by 5 P(G-Prhs 5 (~9) 86 (79/21)

palladium-catalyzed intermolecular cycloaddition, which involves
a nucleophilic ring closure to the central carbon of-allylpalla-
dium intermediatéd

a Combined yield of two diastereomefsDetermined by*H NMR. ¢5 mol
% of ligand was used! The ratio was not determined.

Table 2. Palladium-Catalyzed Synthesis of Spiro[2.4]heptanes:

X Scope PACP(I®-Catl)
oxidative Q (5 mol %) EWG
Pd(O)l addition o , Bwa P(Oi-Pr)z (10 mol %)
B X W CH,Cl, ,
o~ Nu “Pd(ll) Nu~ Ar CO:Me 40°C, 24 h Ar" TO,Me
Nu attack N attegk Nu 1 (1.8 equiv) 2 4
atCtorCs 17 atcz 12 Ar = Ph 2a; EWG = CO,Me o)
allylic substitution cyclopropanation 1b: Ar = 4-MeOC¢H, 2b: EWG = CO,Et &/
Figure 1. Allylic substitution versus cyclopropanation in the nucleophilic 13 ﬁ:im‘iﬁ@'r“ gg EY/va - gﬁzt'Bu \
attack to ar-allylpalladium complex. 1e: Ar = 1-naphthyl 2e: X =CH,
2t:X=0
Recently, we deviseg-methylidenes-valerolactones (e.gla) entry 1 2 product % yield® (dr)°
as new reagents for palladium-catalyzed43] cycloaddition 1 1a 2a 4aa 86 (79/21)
reactions with nitrones, demonstrating that these reagents effectively g 11b %a iba g% gz?tggg
P ; o c a ca
act as a four-carbon un.|t in an intermolecular cycloaddition 1 1d 54 ada 87 (72128)
reaction® To expand their utility, we attempted a [4 2] 5 le 2a 4ea 97 (70/30)
cycloaddition reaction ofawith methyl acrylate 2a), an electron- 6 la 2b 4ab 92(79/21)
- A ’ 7 la 2¢c 4ac 77 (90/10)
deficient olefin, in the presence of 5 mol % of Pd/2Reatalyst 8 1a 2d 4ad 88 (76/24)
at 40°C (Table 1, entry 1). Under these conditions, the expected 9 la 2e 89 (65/35)
[4 + 2] cycloadduct 8ag) was obtained only in 29% yield and the
major product turned out to be spiro[2.4]heptd@a (64% yield).
We subsequently determined that the selectivityta over 3aa
could be somewhat improved by the use of a bisphosphine ligand 10 la 2f 94 (57/43)

such as binajpor dpp# (3aa4aa= 20/80 to 17/83; entries 2 and
3), and the employment of a trialkylphosphite such as P(QMe)
P(Oi-Pr) as the ligand further enhanced the selectivity toward the
formation of4aa (=95% selectivity; entries 4 and 5).

Under the conditions with P(&Pr); as the ligand, several
y-methylidenes-valerolactones can be used for the synthesis of
spiro[2.4]heptaned with methyl acrylate in high yield (8797%

4af

~._ H
PH TO,Me

2The [4 + 2] cycloadducts3 were obtained in up to 8% vyield for all the
entries.? Combined yield of two diastereomersDetermined by*H NMR.

A proposed catalytic cycle of this process is illustrated in Figure

yield; Table 2, entries25).° With respect to the electron-deficient
olefin, other acrylates as well as acrylonitrile are also suitable
coupling partners, selectively giving cyclopropanation proddcts
(77-92% yield; entries €8). In addition, other electron-deficient
olefins such as 2-cyclopenten-1-one andH)ffuranone undergo
the present cycloaddition witha as well to give the corresponding
tricyclic spiro[2.4]heptanes in high yield (8®4% yield; entries 9
and 10)©
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2. Thus, oxidative addition of the allyl ester moiety &fto
palladium(0), followed by decarboxylatid#!?gives 1,4-zwitteri-
onic speciesA. The anionic carbon ofA then attacks the
electrophilic carbon of electron-deficient olefrto give intermedi-
ateB, which undergoes a ring closure through a nucleophilic attack
to the central carbon of ther-allylpalladium moiety to give
palladacyclobutan€.?¢ Reductive elimination of product then
regenerates a palladium(0) spedciés.

10.1021/ja0772360 CCC: $37.00 © 2007 American Chemical Society
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4 Pd(0) 1 employed, and selective (4 2] cycloadditions can also be achieved
o, by the use of a bulky monophosphine ligand. Future studies will
explore more details of the present catalysis including the mecha-
Pd(ll) EWG Pd(IIG;) nistic studies as well as the development of an asymmetric variant.
c 2<7G\) Acknowledgment. Support has been provided in part by JSPS.
A’ coMe Al COMe Supporting Information Available: Experimental procedures and

compound characterization data (PDF) and X-ray data (CIF). This
material is available free of charge via the Internet at http:/pubs.acs.org.
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Figure 2. Proposed catalytic cycle for the palladium-catalyzed synthesis
of spiro[2.4]heptaned from 1 and 2.
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Figure 3. Proposed pathways for the production of (a) spiro[2.4]heptanes
4 and (b) [4+ 2] cycloadducts3.

PdCp(n3-C3Hs)
0 (5 mol %) COZMe CO:Me
le} Iigand (10 mol %)
+ 2
COM C|(0H2)20|
ph ©O2Ve 60°C,48h CO2Me PH COQMe
1a (1.8 equiv) (t-Bu),R 3aa

56% yield 14% yield

O O (dr = 71/29)

P(o-Tol)z 83% yield 4% yield
(dr = 84/16)

When [4+ 2] cycloadducts3, rather than spiro[2.4]heptands
are the desired products, these can be selectively obtained by
employing a bulky tertiary phosphine ligand. For example, the use
of (t-Bu),P(0-PhGH,)13in the reaction oflawith 2aat 60°C gives
3aaas the major producBga4aa= 80/20) in 70% combined yield
(eq 1), and high yield oBaa (83% yield) is achieved by using
P(o-Tol)z as the ligand with minimal amount dfaa (4% vyield)14

Although it is not entirely clear at this stage, the fact that the
use of relatively small phosphine and phosphite ligands as well as
bisphosphine ligands tends to give spiro[2.4]heptahEBable 1)
and the use of bulky phosphine ligands preferentially gives-[4
2] cycloadducts3 (eq 1) may indicate that Pd{allyl)L , species is
mainly responsible for the ring closure through the central attack
in the present catalysis (Figure 3a) and /Rd(lyl)L; species is
more responsible for the six-membered ring formation by the
terminal attack (Figure 30}:16

In summary, we have described the development of a palladium-
catalyzed intermolecular cycloaddition pfmethylidenes-vale-
rolactones with electron-deficient olefins to produce spiro[2.4]-
heptanes with high selectivity through a nucleophilic ring closure
to the central carbon of a-allylpalladium intermediate. We have
found that the course of the reaction is dependent on the ligand
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